Causes of performance differences between scallop culture in Peru and Chile: a bio-economical modelling approach

Sieme Bossier

Supervisors: Prof. Dr. Karline Soetaert
Prof. Dr. Matthias Wolff

Co-supervisor: Dr. Marc Taylor

Master Thesis
Master in Marine and Lacustrine Science and Management
2014-2015
Causes of performance differences between scallop culture in Peru and Chile: a bio-economical modelling approach
• $T_{\text{summer}} = 22^\circ\text{C}$

• $T_{\text{summer}} = 19^\circ\text{C}$

Peru: Taylor et al., 2008
Chile: Wolfgang Stotz, 2000
• Scallop density = phase-depending

© SASCA
Materials & Methods

• Use R
 → Create dynamic model
 → Easy implementation of other functions

• Scallop-function
 – Initial seed size → 30 mm vs. 10 mm
 – Starting stock → 2.88 million vs. 15 million
The Model

- Ecological Element
- Economic Element
- Decision Element
The Model

• Growth \rightarrow Von Bertalanffy

\[
\frac{dL}{dt} = K \cdot (L_\infty - L(t))
\]

Ecological Element

Economic Element

Decision Element

N = 2.88 million
Seed = 30 mm
The Model

- Growth \rightarrow Von Bertalanffy
 \[\frac{dL}{dt} = K \times (L_\infty - L(t)) \]
- Stock population \rightarrow Mortality
 \[\frac{dN}{dt} = -Z \times N(t) \]

N = 2.88 million
Seed = 30 mm
The Model

- Growth \rightarrow Von Bertalanffy
 \[
 \frac{dL}{dt} = K \times (L_\infty - L(t))
 \]

- Stock population \rightarrow Mortality
 \[
 \frac{dN}{dt} = -Z \times N(t)
 \]

- Biomass
 \[
 B(t) = \text{Weight}(t) \times N(t)
 \]
The Model

- **Ecological Element**
 - Total Initial Cost (TIC)
 - buying seed
 - seedling

- **Economic Element**
 - Operation Expenses (OE)
 - guard
 - maintenance
 - boat
 - harvest cost & material cost → depend on n° of scallops

- **Decision Element**
 - Total Operation Cost (TOC)
 - $T_{OC_{Peru}} = \text{Cost} (t = H) + \Delta HC$
 - $T_{OC_{Chile}} = \text{Cost} (t = H) + \Delta CM$

=> PROFIT = Total Sales - TOC
The Model

<table>
<thead>
<tr>
<th>Size scallops</th>
<th>Stocking density</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20 mm</td>
<td>30 %</td>
</tr>
<tr>
<td>20 – 30 mm</td>
<td>50 %</td>
</tr>
<tr>
<td>30 – 40 mm</td>
<td>65 %</td>
</tr>
<tr>
<td>> 40 mm</td>
<td>80 %</td>
</tr>
</tbody>
</table>

- **Total Initial Cost (TIC)**
 - purchase of seed
 - seedling

- **Operation Expenses (OE)**
 - guard
 - maintenance
 - boat
 - harvest cost & material cost

- **Total Operation Cost (TOC)**

- **Profit** = Total Sales - TOC

- **Model Size scallops Stocking density**
 - Stocking density < 20 mm: 30%
 - Stocking density 20 – 30 mm: 50%
 - Stocking density 30 – 40 mm: 65%
 - Stocking density > 40 mm: 80%
The Model

- **Ecological Element**
 - Total Initial Cost (TIC)
 - buying seed
 - seedling

- **Economic Element**
 - Operation Expenses (OE)
 - guard
 - maintenance
 - boat
 - harvest cost & material cost
 \(\rightarrow \) depend on n° of scallops

- **Decision Element**
 - Total Operation Cost (TOC)
 \(TOC_{\text{Peru}} = Cost(t = H) + dHC \)
 \(TOC_{\text{Chile}} = Cost(t = H) + dCM \)

\[\Rightarrow \text{PROFIT} = \text{Total Sales} - \text{TOC} \]
The Model

- Harvest time → Profit

Ecological Element

Economic Element

Decision Element
The Model

- **Ecological Element**
- **Economic Element**
- **Decision Element**

Net Present Value

\[
NPV(i, N) = \sum_{t=0}^{N} \frac{C_t}{(1+r)^t}
\]

- Harvest time \rightarrow Profit
The Model

- Harvest time → Profit
- Net Present Value
 \[NPV(i, N) = \sum_{t=0}^{N} \frac{C_t}{(1+r)^t} \]
- Internal Rate of Return
Comparison

Peru
- N = 2.88 million
- Seed = 30 mm
- Size = 84 mm
- Stock = 2 million
- Profit = 300,000 US$
- Wait 2 years:
 - Yearly profit = 16,300 US$

Chile
- N = 2.88 million
- Seed = 30 mm

Graphs showing the total profit per year vs. the moment of harvest in years.
Comparison

<table>
<thead>
<tr>
<th>Country</th>
<th>Seed (mm)</th>
<th>Total Profit (N million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peru</td>
<td>30</td>
<td>2.88</td>
</tr>
<tr>
<td>Chile</td>
<td>10</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Profit after 1 year:
- Peru: 300,000 US$
- Chile: 72,000 US$
Comparison

- N = 15 million
- Size = 10 mm

Results

Peru vs. Chile (2)

Profit after 1 year:
- 66% of stock
- 80 mm
- 1,200,000 US$
Discussion & Conclusion

• Low investment cost in Peru
 → low threshold

• Employment vs. Carrying Capacity
Future Modelling

• Nutrient availability
• Growth data from Chile

• Multiple cohorts in one year
 » Peru: 2 cohorts
 » Chile: 6 cohorts

 » NPV & IRR comparison
 » 30 fishermen work in 1 lote